
www.manaraa.com

The Impact of Quadratic Nonlinear Relations between Soil Moisture
Products on Uncertainty Estimates from Triple Collocation Analysis

and Two Quadratic Extensions

SIMON ZWIEBACK

Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland

CHUN-HSU SU

Department of Infrastructure Engineering, University of Melbourne, Parkville, Victoria, Australia

ALEXANDER GRUBER

Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria

WOUTER A. DORIGO

Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria,

and Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium

WOLFGANG WAGNER

Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria

(Manuscript received 29 October 2015, in final form 31 March 2016)

ABSTRACT

The error characterization of soil moisture products, for example, obtained frommicrowave remote sensing

data, is a key requirement for using these products in applications like numerical weather prediction. The

error variance and root-mean-square error are among the most popular metrics: they can be estimated

consistently for three datasets using triple collocation (TC) without assuming any dataset to be free of errors.

This technique can account for additive andmultiplicative biases; that is, it assumes that the three products are

linearly related. However, its susceptibility to nonlinear relations (e.g., due to sensor saturation and scale

mismatch) has not been addressed. Here, a simulation study investigates the impact of quadratic relations on

the TC error estimates [also when the products are first rescaled using the nonlinear cumulative distribution

function (CDF)matching technique] and on those by two novel methods. These methods—based on error-in-

variables regression and probabilistic factor analysis—extend standard TC by also accounting for nonlinear

relations using quadratic polynomials. The relative differences between the error estimates of the ASCAT

remotely sensed product by the quadratic and the linear methods are predominantly smaller than 10% in a case

study based on remotely sensed, reanalysis, and in situ measured soil moisture over the contiguous United

States. Exceptions with larger discrepancies indicate that nonlinear relations can pose a challenge to traditional

TC analyses, as the simulations show they can introduce biases of either sign. In such cases, the use of nonlinear

methods may complement traditional approaches for the error characterization of soil moisture products.

1. Introduction

Soil moisture has been identified as a crucial compo-

nent of the earth system, in particular owing to its role

as a link between the water, energy, and carbon cycles

(Seneviratne et al. 2010). Observations of its temporal

and spatial dynamics have great value and potential in

applications as diverse as streamflow prediction (Brocca
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et al. 2012), crop monitoring (de Wit and van Diepen

2007), weather forecasting (Scipal et al. 2008a), and the

mapping of disease vector abundance (Chuang et al.

2012). One approach to mapping soil moisture is based

on land surface models that are driven by or coupled

with atmosphericmodels (Koster andMilly 1997; Koster

et al. 2009; Balsamo et al. 2015). Satellite-based remote

sensing products provide independent estimates of sur-

face soil moisture (Kerr et al. 2012; Wagner et al. 2013;

Dorigo et al. 2015), as do in situ probes, which are often

considered to be themost accurate method (Seneviratne

et al. 2010; Crow et al. 2012). However, observational

networks are sparse, and these measurements further-

more typically refer to much smaller spatial scales. The

spatial resolution is also a common source of disparity

between different models and remote sensing products

(Wagner et al. 2007; Western et al. 2002). Additional

inherent differences between soil moisture products

have also been attributed to, for example, different pa-

rameterizations, variable sampling depths, the impact of

vegetation, or instrument measurement noise (Beven

2001; Crow et al. 2012; Famiglietti et al. 2008; Mialon

et al. 2015). The discrepancies with respect to the un-

derlying ‘‘true’’ soil moisture are commonly partitioned

into systematic and random deviations (Entekhabi et al.

2010; Yilmaz and Crow 2013). Both have to be taken

into account when feeding observations into a model or

when combining different datasets, for example, in data

assimilation for streamflow prediction or weather fore-

casting (e.g., Reichle and Koster 2004; Crow and van

den Berg 2010; Yilmaz et al. 2012).

The triple collocation (TC) technique can be applied

to three such products to yield consistent estimates of

the variance of the random errors (Stoffelen 1998;

Zwieback et al. 2012c; Su et al. 2014). It can do so without

declaring one of the products to be the truth, that is to say,

free of errors (Caires and Sterl 2003; Dorigo et al. 2010).

The three products do not have to be calibrated with

respect to one another: it is possible to account for dif-

ferences in the mean (additive biases between the prod-

ucts) and in the magnitude (multiplicative biases or

different sensitivities to the underlying soil moisture;

Yilmaz andCrow 2013;McColl et al. 2014; Su et al. 2014).

By compensating for additive and multiplicative biases,

TC essentially assumes that the systematic components of

the products are linearly related. Besides linearity, the TC

estimation of the error variance is based on additional

assumptions, in particular that the random errors are un-

correlated with each other and with the true soil moisture.

The validity of these two assumptions has recently been

questioned by Yilmaz and Crow (2014). Furthermore, the

characteristics of the soil moisture products, and hence the

relationships between the products, should not change

over time, for example, seasonally. However, soil mois-

ture datasets often differ in their seasonal cycle (Drusch

et al. 2005), so that temporal anomalies are frequently

analyzed rather than the standard products themselves

(Brocca et al. 2011; Dorigo et al. 2010). Several studies

have suggested extensions to TC that can account for

complex temporal changes at various time scales (e.g.,

Loew and Schlenz 2011; Zwieback et al. 2013; Su andRyu

2015). By contrast, the assumption of a linear relation

between the datasets, that is, that—noise notwithstanding—

they only differ by an offset and a different scaling factor,

has not been addressed explicitly. The cumulative distri-

bution function (CDF) matching procedure can partially

account for them, but it is limited in that it does not ex-

plicitly consider errors in the soil moisture products

(Yilmaz and Crow 2014).

Evidence for such nonlinear relations between dif-

ferent products has been found by, for example, Mittelbach

et al. (2011), Drusch et al. (2005), De Lannoy et al. (2007a),

and de Rosnay et al. (2009). For instance, Mittelbach et al.

(2011) observed a declining sensitivity of an impedance

probe as the soil became increasingly wet. De Rosnay

et al. (2009) also identified a similar saturation effect

when comparing areal soil moisture with point measure-

ments. The associated discrepancy in the spatial scalemay

also have contributed. When upscaling point- to field-

scale measurements, De Lannoy et al. (2007a) noted

that a nonlinear method (CDF matching) was more

accurate than a linear mapping. The gap in spatial scale

was also a possible contributing factor to the nonlinear

relations between in situ and remotely sensed soil

moisture found by Drusch et al. (2005), in addition to

inherent differences between these techniques. Many of

the other previously identified origins of additive and

multiplicative biases, such as differences in the sampling

depth and the parameterization of the retrieval method

or hydrologic model, may also contribute to nonlinear

relations (De Ridder 2003; Koster et al. 2009).

Such nonlinear relations potentially impact common

error metrics such as the correlation coefficient or the

estimates obtained by the TC technique (Gruber et al.

2016). Their influence on TC error estimates of satellite

soil moisture products has not been studied in detail

before. We want to address this open question using

both linear TC analysis and nonlinear techniques: the

established nonparametric CDF matching technique as

well as two new extensions of TC that can handle qua-

dratic effects. The first one views TC as an instance of

factor analysis (FA), a statistical technique that is widely

applied in the social sciences and psychology (Wall and

Amemiya 2007). The rationale of FA is to express ob-

served quantities (the soil moisture products) as noisy

linear measurements of a limited number of latent
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variables called factors (the underlying soil moisture).

Nonlinear extensions of FA are usually based on addi-

tional assumptions: in our case we require that both the

underlying soil moisture and the errors follow normal

distributions. The second method that we propose ex-

tends the regression approach suggested by Scipal et al.

(2008b) but is restricted to small quadratic nonlinear-

ities. We analyze the accuracy and the robustness of

these techniques in a simulation study. The accuracy in

the presence of quadratic nonlinearities is assessed by

comparing the simulation results with the known un-

derlying error magnitudes as the degree of quadratic

nonlinearity varies. In particular, this will allow us to see

how a violation of the linearity assumption can impact

the error estimates by the linear TC technique, for ex-

ample, what magnitude and sign a possible bias can

have. We furthermore analyze the robustness of the

methods with respect to violations of their assumptions

(e.g., normality and model misspecifications) using

dedicated scenarios in which these assumptions are vi-

olated. Subsequently, we compare the methods in a

small case study, where we assess a coarse-scale remote

sensing product [Advanced Scatterometer (ASCAT)]

by comparing it to a coarse-scale model (ERA-Interim/

Land) and around 100 in situ probes of the U.S. Climate

Reference Network (USCRN) over the contiguous

United States. Such a combination of datasets is com-

monly employed in TC studies in order to characterize

the uncertainty of the remotely sensed soil moisture

product (e.g., Dorigo et al. 2015; Loew and Schlenz

2011): here, we focus on the sensitivity of the ASCAT

error estimates to the choice of method, in particular

whether it accounts for linear or quadratic relations. In

contrast to the simulations, the underlying error mag-

nitudes are not known, but the differences between the

linear and the quadratic methods may give an indication

of the impact of quadratic nonlinearities on TC error

characterization. We apply these methods to both the

standard products and the temporal anomalies. As soil

moisture commonly exhibits a pronounced seasonal

variation and as discrepancies in the climatology are

frequently a major source of difference between differ-

ent soil moisture datasets (Brocca et al. 2011), the re-

moval of the seasonal signal when forming the temporal

anomalies may potentially account for nonlinear relations

induced by the mismatched climatological components.

We thus hypothesize that the impact of nonlinearities on

the error estimates of the temporal anomalies is smaller.

Taken together, the simulations and the case study will

provide a first insight into the practical relevance of non-

linear, especially quadratic, relations in TC error charac-

terization of soil moisture datasets (Gruber et al. 2013; Su

et al. 2014; Dorigo et al. 2015).

2. Triple collocation

Even though TC is commonly applied to time series of

measurements, the temporal character of the data is

only rarely accounted for explicitly (Zwieback et al.

2013; Su and Ryu 2015). We will also neglect the tem-

poral character of the data, that is, the instances of the

time series will essentially be treated as independent

samples. In particular, this implies that the error terms

are not autocorrelated and that the error variances and

the offsets between the products (e.g., an additive bias)

do not change.

In its simplest form, the TC approach assumes that

such offsets do not exist, that is, that the products are

matched. They all are direct measurements of the un-

derlying soil moisture T 0 subject to additive errors «i
(zero mean, variance s2

i ):

X5T 0 1 «
X
, Y5T 0 1 «

Y
, and Z5T 0 1 «

Z
. (1)

To simplify the analysis of the FA method in section 3b,

we propose an alternative parameterization in terms of a

dimensionless soil moisture anomaly T, which has zero

mean and unit standard deviation. The first equation of

(1) is then expressed asX5wX1T1 «X , and in order for

the products to be scaled, we require the linear scaling

factors wi1 of all products i to be equal.

For such matched products, the TC technique can

yield unbiased and consistent estimates of the error

variances ŝ2
i under the following assumptions (Zwieback

et al. 2012c; Yilmaz and Crow 2014; Gruber et al. 2016):

d errors have zero mean,
d they are mutually uncorrelated, and
d they are not correlated with the underlying soil

moisture signal (i.e., T). If the latter is treated as a

deterministic quantity, the error variances must not

depend on T.

In practice, different systematic relations to the un-

derlying soil moisture are commonly observed. In par-

ticular, many datasets require the compensation of an

offset (additive bias) and of differences in the sensitivity

(multiplicative bias), for example, for Y:

Y5w
Y0

1w
Y1
T1 «

Y
. (2)

Not only do different products commonly have different

linear scaling factors wY1, but they may also differ in the

measure in which the water content is expressed. For

instance, the ASCAT remotely sensed soil moisture

product reports the degree of saturation (DoS; di-

mensionless) rather than the more common absolute

volumetric soil moisture (m3m23). In such cases, also

the linear scaling factors and error variance have
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different dimensions, making comparisons of the latter

difficult. Normalized error quantities, such as the signal-

to-noise ratio (SNR), have been found to be more ame-

nable for such comparisons (McColl et al. 2014; Gruber

et al. 2016). The SNRof product imeasures themagnitude

of the underlying signal Si relative to the noise level Ni:

SNR
i
5

S
i

N
i

. (3)

When the error is independent of the anomaly T, the

variance Vi of product i is the sum of the power due to

the signal Si and that due to the noiseNi. Thus, the signal

power can be estimated from the observed product

variance V̂i by Ŝi 5 V̂i 2 N̂i. The noise power estimate

N̂i is directly given by the estimated ŝ2
i .

One way to estimate this error variance using TC was

introduced by Stoffelen (1998). The method also pro-

vides estimates of the scaling factors with respect to a

chosen reference product i, for whichwi0 5 0 andwi1 5 1

(Zwieback et al. 2012c; Yilmaz and Crow 2013). This

approach, which has since been shown to be an instance

of the instrumental variables (IV) method (Su et al.

2014), can be used to rescale the data to achieve matched

products as in (1). Alternatively, these error estimates ŝ2
i

can also be obtained directly without explicit rescaling

(Stoffelen 1998; Caires and Sterl 2003; McColl et al. 2014;

Gruber et al. 2016).

Rather than relying on the IV rescaling, Scipal et al.

(2008b) suggested a similar approach that is based on

total least squares (TLS). This regression technique

yields estimates of the factorswij with which the datasets

can be matched when the error variances are known. As

the error variances can be estimated by TC, Scipal et al.

(2008b) iterated the TC analysis and TLS regression

until convergence.

These two methods provide consistent estimates of

the scaling factorswij, that is, the results can be expected

to converge to the actual value as the number of samples

increases (Zwieback et al. 2012c; Gruber et al. 2016).

The property of consistency is also attractive in data

assimilation studies, whereas inconsistent methods were

deemed suboptimal by Yilmaz and Crow (2013). A

common example of such an inconsistent method is

CDF matching.

3. Potential methods for tackling nonlinear
relations

a. CDF matching

The idea of the CDFmatching approach is to transform

a soil moisture dataset so that its marginal distribution

matches or approximately matches that of a reference

product during the study period (Reichle and Koster

2004). Thus, a bias or a discrepancy in the dynamic range

can be removed, and also the higher-order moments

become identical (Gao et al. 2007). There are two gen-

eral approaches to matching soil moisture products

based on their distribution. The first one applies a

mapping (or scaling) to one dataset so that the lower-

order moments (e.g., the first and second) of the results

equal those of the reference (Brocca et al. 2013; Yilmaz

and Crow 2013). The alternative approach employed

here operates directly on the empirical cumulative dis-

tribution functions of the reference product X and the

product to be matchedY. Following Drusch et al. (2005)

and Brocca et al. (2011), the two datasets are sorted and

then the difference of the corresponding elements of the

two ranked datasets computed. Subsequently, a poly-

nomial in Y is fitted to the differences. This polynomial

provides a correction term to Y so that its CDF ap-

proximately matches that of X. We use a polynomial

of degree 5, which is considered to provide an ade-

quate balance between the number of fitted parame-

ters and model generality (Mahfouf 2010; Brocca et al.

2011, 2013).

This general method does not yield consistent esti-

mates of the rescaling relations, which Yilmaz and Crow

(2013) deemed detrimental for data assimilation studies.

Negative effects also occur when estimating the error

variances in standard linear triple collocation analysis of

section 2 (see the treatment in section S1 of the sup-

plemental material).

b. Factor analysis: EM algorithm

Nonlinear relations between the soil moisture prod-

ucts could alternatively be accounted for in a parametric

approach, whereby they are represented by mean map

functions pi(T):

X5 p
X
(T)1 «

X
,

Y5 p
Y
(T)1 «

Y
, and

Z5 p
Z
(T)1 «

Z
, (4)

where such a function pi(T) may be a polynomial pa-

rameterized as

p
i
(T)5 �

Ki

k50

w
ik
Tk . (5)

According to statistical terminology, the dimensionless

anomaly T is a latent or hidden variable, while the

productsX,Y, andZ are observed. In the social sciences,

operations research, and many more disciplines, data-

sets that might be described by models similar to (4) are

1728 JOURNAL OF HYDROMETEOROLOGY VOLUME 17



www.manaraa.com

studied using factor analysis (Anderson 2003; Wall and

Amemiya 2007). Linear mean maps p(T) are common,

but several nonlinear parametric extensions and asso-

ciated algorithms for estimating these mean maps and

the error variances have been proposed in the literature

(Yalcin and Amemiya 2001). The estimation by maxi-

mum likelihood is among the most popular methods and

has been found applicable to a large variety (e.g., linear,

different kinds of nonlinear functions, and different di-

mensionality) of models. A potential drawback is its

requirement of specifying the probability distributions

ofT and the noise terms explicitly (Yalcin andAmemiya

2001). These are commonly assumed to be normal dis-

tributions even though the validity of this assumption

has been questioned repeatedly (e.g., Mooijaart 1985;

Anderson and Amemiya 1988). However, both simula-

tions and observational studies have indicated that the

estimates are commonly robust to deviations from nor-

mality (Browne 1987; Browne and Shapiro 1988; Yalcin

and Amemiya 2001). Owing to the simplicity of the

normal distribution, we will thus also assume it for both

the underlying dimensionless anomaly T—despite the

presence of physical bounds, skewness, nonnormal

kurtosis, or bimodality (Rodriguez-Iturbe et al. 1999;

Milly 2001; Western et al. 2002; Teuling et al. 2005)—

and the noise terms «i (Crow et al. 2011). The robustness

of this assumption will be tested by simulations and by

comparison with other methods that do not rely on

normality. In line with the restrictions outlined pre-

viously, we will further assume that the samples j of the

observed products, which are typically given as time

series, are independent and identically distributed. The

impact of autocorrelation on standard TC analysis is

limited as long as the length of the time series is much

greater than the time scale of the autocorrelation

(Zwieback et al. 2012c, 2013). It does, however, gener-

ally inflate the uncertainty of the parameter estimates

(Zwieback et al. 2013). The increase in uncertainty also

occurs in related techniques such as principal compo-

nent analysis or least squares regression, where it has

been shown to impact tests of significance (Neville et al.

2004; Erzini et al. 2005). Autocorrelations, seasonality,

and other temporal aspects of the soil moisture products

could in future be explicitly modeled (Crow and Yilmaz

2014). The additional temporal parameters of such

models may (once estimated from the data) provide a

more comprehensive characterization of the product

uncertainties.

In addition, we will restrict ourselves to linear and

quadratic polynomials for the mean maps [K5 1 or 2 in

(5)]. The quadratic polynomial of product i, pi(T)5
wi0 1wi1T1wi2T

2, can be characterized by its quadratic

nonlinearity parameter mi:

m
i
5

����wi2

w
i1

���� . (6)

We will prescribe that one of these meanmaps be linear,

that is, mi 5 0, in order for the estimation problem to be

solvable (Yalcin and Amemiya 2001). The identification

of this one product is part of the assumptions inherent in

the parameterization, which also include the restriction

to quadratic expansions of themeanmaps. In contrast to

standard TC, the weights wik of all three products are

free parameters in this approach, owing to the anomaly

parameterization of section 2, in which there is no ref-

erence dataset. This parameterization makes the prob-

lem solvable if wi1 $ 0, that is, the model is identifiable

(cf. Yalcin and Amemiya 2001). Under these assump-

tions and given observations of the products, the likeli-

hood function l is uniquely defined. However, the

evaluation of the likelihood function is expensive as one

has to integrate out (marginalize over) the unobserved

anomaly T, thus rendering standard optimization ap-

proaches inefficient (MacKay 2003). In such cases, the

expectation–maximization (EM) algorithm is an estab-

lished method for maximizing l and thus estimating the

parameters (Neal and Hinton 1998; Zwieback et al.

2012a). However, the standard EM algorithm is com-

putationally intractable for this particular problem. An

extension of the EM algorithm, variational EM, pro-

vides approximate solutions by maximizing a lower

bound on l instead (Jaakkola et al. 1996; Frey and

Hinton 1999). This bound is called the variational free

energy F and is given by the sum over all samples j of Fj,

that is, F5�jFj with

F
j
52

1

2
�
N

i50

log(2ps2
i )1

1

2

�
11 log(2pn20)2

n20
s2
0

�

2
h2
0

2s2
0

1 2 �
N

i51

1

2s2
i

2
4 x

i
2 �

Ki

k50

w
ik
m

k

!2

1 �
Ki

k50
�
Ki

k050

w
ik
w

ik0ck,k0

3
5 (7)

using an index notation in which i denotes the product

(of which there are N; i5 0 corresponds to the anomaly

T) and k denotes the degree of the mean map poly-

nomial. The observed value (sample j) of product i is

denoted by xi. The idea of the variational approach is to

introduce, for each bound Fj specific to a sample j, var-

iational parameters h0 and n20. These represent, re-

spectively, the mean and variance of the approximation

to the distribution of the dimensionless anomaly given

the observed xi of all N products. The advantage of the
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variational approach is that this latter distribution,

which is difficult to evaluate, does not have to be com-

puted. Instead, it is approximated by minimizing the

variational free energy of sample j with respect to the

variational parameters. This minimization constitutes

the expectation step (E-step) of the EM algorithm. As

part of the E-step, the output means mk and output

covariances ck,k0 , which depend on the variational pa-

rameters, have to be evaluated: they are nonphysical

quantities that describe the distributions of hypothetical

soil moisture products. Amore detailed explanation and

the relevant formulas are given in section S2 of the

supplemental material. It also contains a derivation of

the maximization step (M-step), which yields estimates

of the error variances ŝ2
i and the polynomial coefficients

wik for each product. These estimates depend on the

results of the E-step: the algorithm alternates these two

steps until convergence, thus yielding final estimates of

the parameters of the probability distributions (ŝ2
i and

wik). The probability distributions can be parameterized

in terms of quadratic Q mean maps or exclusively in

terms of linear L mean maps, and we refer to the asso-

ciated EM algorithms for parameter estimation as EM-

Q and EM-L, respectively.

c. TLS extension

An alternative approach to incorporating nonlinear

parametric functions may be to extend the error-in-

variables (or TLS) regression approach employed by

Scipal et al. (2008b) in the linear case. Their approach

consists of three steps. Step 1 is the TLS regression,

which provides estimates of the scaling factors wij,

whereby one of the products (say X) is taken as a ref-

erence with wX0 5 0 and wX1 5 1. Step 2 rescales the

data (e.g., Y 0 from the observed Y) and employs TC on

this rescaled dataset [see (1)], which yields error esti-

mates of the scaled soil moisture products. These er-

ror estimates are subsequently scaled back in step 3 to

the actually observed products, so that, for example,

ŝ2
Y 0 is converted to ŝ2

Y . These error variances are re-

quired in step 1 and this cycle is iterated until

convergence.

The regression analysis of step 1 is also applicable

to higher-order polynomials if the mean map of the refer-

ence product remains linear, for example, using the efficient

algorithm by Boggs et al. (1987). However, the rescaling in

step 2 of the original approach cannot be extended so easily.

First, the inversemapping fromY to its scaled versionY 0 will
not be unique: for instance, in the quadratic case

Y5wYs0 1wYs1Y
0 1wYs2Y

0 2 there will in general be two

values ofY 0 that correspond to any value ofY [note that the

sub-subscript s (scaled) indicates that the coefficient wYs0

linksY 0 toY rather thanT toY].We propose to address this

by choosing the solution Y 0 that is closer to the value ob-

tained with wYs2 5 0, which we expect to be the ‘‘correct’’

solutionwhen this quadratic term is small, that is,mYs
� 1 in

the anomaly parameterization. Second, such rescaling is not

compatible with the errormodel of (4) as the noise ceases to

be additive upon application of a nonlinear mapping, as

opposed to a linear transformation. We thus expect this

approximation tobe increasingly accurate asmYs
approaches

0. The mapping of the error variance of step 3 is also only

valid in the linear case. We propose to use a linear approx-

imation (first-order Taylor expansion around the mean

Y 0 5 0) to achieve this scaling of the error variance, a step

that is also expected to be increasingly accurate as mYs
/ 0.

In summary, we propose tomapY toY 0 using the quadratic
equation and to use a linear approximation to scale the TC

error variance estimate of Y 0 to that of Y. The mean map

parameters are subsequently converted from the parame-

terization based on a reference product to that based on the

dimensionless anomaly T (section 2).

d. Method comparisons

In the simulations and the case study, we will employ

the methods outlined above and summarized in Table 1,

along with the underlying assumptions (e.g., linear vs

nonlinear and distributions).1 To separate the relaxed

linearity assumption from the additional parametric

assumption, the EM algorithm will be run in a linear

TABLE 1. Overview of themethodsmk employed for error characterization, including the section where they are described and a summary

of their assumptions.

mk Name Section Remarks (assumptions, restrictions, etc.)

TC Triple collocation (IV) 2 Linear, standard TC assumptions

CDF TC with CDF matching 3a Nonlinear, assumptions as TC after CDF matching (noise not considered)

EM-L Variational EM, linear 3b All mean maps linear, standard TC assumptions plus Gaussian distributions

EM-Q Variational EM, quadratic 3b First mean map linear, others quadratic, otherwise like EM-L

TLS-L TC (TLS, linear) 3c All mean maps linear, standard TC assumptions

TLS-Q TC (TLS, quadratic) 3c Mean maps as EM-Q, assumptions as TLS-L plus small nonlinearity

1 These methods are implemented in the software package

nlscaling (http://dx.doi.org/10.5281/zenodo.44383).
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(EM-L) and a quadratic mode (EM-Q), and similarly

for TC based on TLS regression. When all these

methods are applied to measured data, we compare two

error estimation techniques m1 and m2 by analyzing the

differencesD and the relative differences (RD) between

the estimates of the soil moisture RMSE 5
ffiffiffiffiffi
ŝ2
i

p
of any

product i:

D(m
1
,m

2
)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2(m

2
)

q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1
)

q
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2
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ŝ2
p

(m
1
)
, (9)

where the relative difference will be commonly expressed

in percent. The SNR of different methods will be com-

pared using their ratio (RSNR):

RSNR(m
1
,m

2
)5

SNR(m
2
)

SNR(m
1
)
, (10)

which we will express in decibels. In contrast to the case

of real data, the true underlying values are known in the

simulated case study, and the estimates can thus be

compared with them directly.

4. Synthetic case study

a. Scenarios

To assess the suitability and limitations of these

methods, we perform a synthetic case study. The soil

moisture products are simulated according to the error

model (4). The model consists of the dimensionless soil

moisture anomaly (i.e., T) and the noisy soil moisture

productsX, Y, and Z, each reported as volumetric water

content (VWC; m3m23). Their expected values are re-

lated to the underlying dimensionless anomaly by

polynomial functions, which can be linear or quadratic

owing to the TLS and EM methods’ restriction to qua-

dratic mean maps. We distinguish between different

degrees of nonlinearity by varying the quadratic non-

linearity parameter, with m 5 0 corresponding to linear

mean maps. To test the sensitivity of the different

methods with respect to the distributional forms of the

random variables, we furthermore add scenarios where

the simulations are based on a range of probability dis-

tributions. There is also one scenario in which the linear

mean map in the parameterization of the quadratic EM

and TLS approaches is distinct from that used in the

simulations. In addition, the impact of the SNR on the

applicability of the methods is examined. The base

scenarioN , from which the other scenarios are derived,

is associated with the model of (11):

T5T , with T ; N (0, 1);

X5 0:31 0:1T1 «
X
, with «

X
; N (0,0:052);

Y5 0:21 0:05T1m 0:05T2 1 «
Y
, with

«
Y

; N (0, 0:082); and

Z5 0:251 0:06T2m 0:06T2 1 «
Z
, with

«
Z

; N (0, 0:032), (11)

with m set to 0.1. All weight coefficients have dimensions

of volumetric soil moisture as they link the dimension-

less anomaly T to the simulated soil moisture products

that are reported in terms of volumetric soil moisture.

These products differ with respect to their mean (e.g.,

0.3 vs 0.2m3m23 for X and Y, respectively), their linear

sensitivity with respect to the underlying soil moisture

(e.g., X and Y by a factor of 2, that of X corresponding

to a dynamic range of about 0.4m3m23), and their

quadratic sensitivity. Also, the noise levels, that is, the

standard deviations of «i, vary by almost a factor of 3,

comparable to the spread found in previous studies

(Dorigo et al. 2010; Leroux et al. 2013). The three noise

terms «i and T are assumed independent from one

another.

The additional scenarios are distinguished from this

base case as follows:

d scenario linear (L): the quadratic terms in products Y

and Z are set to zero, that is, m 5 0;
d scenario quadratic 2 (Q2): the quadratic terms are

twice as large, that is, m 5 0.2;
d scenario quadratic 4 (Q4): the quadratic terms are four

times as large, that is, m 5 0.4;
d scenario right skewed (RS): T is modeled by a skew

normal distribution (Azzalini 2005), where the first-

and second-order moments remain the same and the

skewness is set to 0.75 (the maximum possible value

being 1.0);
d scenario heavy tails (HT): both T and the noise terms

have heavy tails, that is, a larger kurtosis, and they

follow a Student’s t distribution with the same first and

second moments as in N but with 5 degrees of

freedom (Anderson 2003);
d scenario bimodal (BM): T follows a bimodal mixture

of Gaussians distribution (MacKay 2003), consisting

of two components with equal weight and mean 60.5

(maximum possible value being 1.0);
d scenario truncatedGaussian (TG):T follows a truncated

Gaussian distribution whose extent is limited to plus or

minus one standard deviation, which is set to 1.85;
d scenario low noise (LN): all mean maps are multiplied

by 4, thus increasing the SNR as the error variance is

kept constant;
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d scenario high noise (HN): all mean maps are divided

by 4, thus reducing the SNR as the error variance is

kept constant; and
d quadratic 2 with switched mean maps (Q2s): same as

Q2, but EM-Q and TLS-Q use quadratic mean maps

for X and a linear mean map for Y.

For each scenario, 250 time series of 350 independent

samples are drawn from the corresponding probability

distribution. All the methods of Table 1 are applied to

all 250 time series. For each method and scenario, this

yields a distribution of estimated RMSEs that can be

directly compared to the known underlying RMSE.

b. Results and discussion

For these scenarios, the distributions of the RMSE

estimates obtained using the methods of Table 1 are

summarized inFigs. 1 and 2. For the linear scenario (i.e.,L),

all methods typically achieve comparable and satis-

factory results, with median biases typically below 5%.

In particular, the differences in both median and spread

between the linear (TC and EM-L) and the quadratic

(EM-Q and TLS-Q) methods are small compared to the

variability of the estimates. Only for productY are there

noticeable (’8%) median biases for methods TLS-Q

and CDF.

The differences between the methods are larger in the

quadratic scenarios (Fig. 1). The median bias of the

nonlinear EM method (i.e., EM-Q) barely (,5%)

changes as the quadratic nonlinearity parameter (i.e., m)

increases. On the other hand, that of its linear counter-

part (i.e., EM-L) increases with m. Its sign and magni-

tude depend on the product. For product X, which is

linearly related to the dimensionless anomaly T, it is

negative and for Q4 it attains a value of more than

0.02m3m23, corresponding to a relative magnitude of

more than 40%. There is a positive bias for products Y

andZ. Their magnitude increases nonlinearly withm: for

product Z it increases from 0.002m3m23 at m 5 0.1 to

0.026m3m23 at m5 0.4. Comparable median biases also

occur for the standard TC method. In addition, the un-

derestimation for product X is concomitant with the

occurrence of invalid negative variance estimates.

The TLS-Q method is also subject to biases in the

nonlinear scenarios. These are not necessarily evident in

the median bias but they can be related to the upward-

skewed distribution of the estimates. Product Y is most

affected by such skewed distributions. While the median

bias increases to only less than 0.01m3m23 in magnitude

as m increases to 0.4, the spread of the distribution more

than doubles. Conversely, products X and Z are not

characterized by a comparable increase in the spread of

the estimates, but their median biases show an in-

creasing trend with m. However, they remain small

compared to the linear methods (,40%). The median

biases of the CDF matching method are comparable to

those of TLS-Q in magnitude, that is, they are also

typically at least a factor of 2 smaller than those of the

linear methods. The CDF method is also affected by

large spreads with upward-skewed distributions of the

estimates. This effect is most pronounced for scenario

Q4 for product X and tends to increase with m for all

products.

The CDF matching method is particularly affected by

deviations from normality (Fig. 2). In the HT scenario,

its estimates are not robust (95% coverage interval ex-

ceeding twice the RMSE for all products), and invalid

values occur with a frequency of 14%. The EM-Q

method, which is explicitly based on the assumption of

normality, is less affected by heavy tails and also robust

to skewed, bimodal, or truncatedGaussian distributions.

FIG. 1. Distribution of the RMSE (m3m23) estimates obtained

with five different methods from Table 1 (distinguished by their

color; TLS-L is not shown as the results are visually in-

distinguishable from TC) for four scenarios with increasing m:

L (m 5 0), nonlinear N (quadratic relation with m 5 0.1), and Q2

and Q4 (with m 5 0.2 and 0.4, respectively). The colored bars in-

dicate the median of the 250 simulations, and the error bars span

95% of the distribution. The underlying true value is shown in red

for reference. The annotation at the bottom of each bar gives the

percentage of invalid estimates corresponding to negative

variances.
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Its linear cousin (EM-L) and also the standard TC

method, which makes no distributional assumptions,

achieve comparable results, but in a few cases (e.g.,

product Z and HT) the median biases increase by more

than 50%compared to the base scenario.Also theTLS-Q

method is found to be affected by deviations from

normality, even though it is not based on such an as-

sumption. While it is robust to heavy-tailed, skewed, and

bimodal distributions, the distribution of the estimates

becomes wide and biased in the TG scenario, similar to

scenarios Q2 and Q4.

The scenario with low noise (LN) points toward the

limitations of the linear methods (EM-L and TC), which

are subject to median biases exceeding 0.02m3m23 and

which produce invalid estimates in up to 71%of the cases.

A possible reason for this phenomenonmaybe the nature

of the TC estimator, in which a positive quantity (the

error variance) is estimated using a difference. For a fixed

signalmagnitude, the number to be estimated approaches

zero as the SNR increases, so that any violation of the

assumptions (e.g., a nonlinear mean map) can have a

relatively larger impact. For product Z, the linear

methods overestimate the RMSE, and the magnitude of

this positivemedian bias is comparable to the scenarioQ4

in which the quadratic nonlinearity parameter (i.e., m) is

4 times as big. While the performance of the EM-Q and

TLS-Q methods remains comparable to the base sce-

nario, that of CDF matching deteriorates appreciably as

the 95% coverage interval for products X and Z exceeds

twice the RMSE. By contrast, a high noise level (HN)

affects the TLS-Q most strongly, which is characterized

by wide (95% coverage more than twice the RMSE) and

upward-skewed distributions. The susceptibility of TLS-

based triple collocation to high noise levels is consistent

with the findings by Boggs et al. (1988), who analyzed and

described the impact of random noise on the TLS re-

gression estimates.

The TLS-Q method is more susceptible to mis-

specified mean maps than EM-Q in theQ2s scenario, in

which the data are simulated withX and Y having linear

and quadratic mean maps, respectively, whereas the

mean maps are switched in the parameterization of

TLS-Q and EM-Q. The results of TLS-Q show a larger

median bias than the linear methods for product Z

(0.14m3m23). The 95% coverage is furthermore com-

parable to the RMSE of products X and Z. Conversely,

EM-Q appears to be robust to such amodelmisspecification

with, for example, a median bias of ,0.01m3m23 for

product Z.

Overall, the EM-Q method consistently achieves the

most reliable results, both in the presence of quadratic

nonlinearities of varying magnitude and cases where the

normality assumption is violated. This indicates that

deviations from normality may be not critical in many

situations, consistent with previous related studies

(Yalcin and Amemiya 2001). Its linear counterpart and

FIG. 2. Distribution of the RMSE (m3m23) estimates obtained with five different methods

from Table 1 (distinguished by their color; TLS-L is not shown as the results are visually

indistinguishable fromTC) for 11 scenarios:N (quadratic relation withm5 0.1), RS, HT, BM,

TG, LN,HN,Q2s, andL (m5 0). The colored bars indicate themedian of the 250 simulations,

and the error bars span 95% of the distribution. The underlying true value is shown in red for

reference. The annotation at the bottom of each bar gives the percentage of invalid estimates

corresponding to negative variances.

JUNE 2016 ZW IEBACK ET AL . 1733



www.manaraa.com

also standard TC, on the other hand, are susceptible to

deviations from linearity. Such nonlinearities are also

seen to affect TLS-Q. While this method is designed to

handle small m � 1, its bias and spread (especially for

m 5 0.4) suggest that this limitation may already be

problematic at m * 0:1. Large spreads and the biases

that the upward-skewed distributions of the estimates

induce have also been found for the CDF matching

method, corresponding to, for example, HT or pro-

nounced nonlinearities (Q4). While certain limitations

of CDF matching in TC analysis in the linear case are

known [see section 3a and Yilmaz and Crow (2013,

2014)], the impact of nonlinearities and the dependence

on the distribution have not been described before and

thus raise questions about the general applicability of

CDF matching methods.

5. Uncertainty analysis of theASCAT soil moisture
product over the contiguous United States

a. Datasets and methods

The remotely sensed soil moisture product (TUW

2015) is derived from observations of the ASCAT in-

struments onboard the Meteorological Operational

(MetOp) satellite series (Wagner et al. 2013). These

active microwave instruments operate at C band

(wavelength of 5.7 cm). The Vienna University of

Technology (TU Wien) Water Retrieval Package, ver-

sion 5.5 (WARP 5.5), algorithm is a change detection

approach, with which time series of the DoS of the soil

are derived from the multiangular backscatter obser-

vations at a resolution of 25 km (Naeimi et al. 2009;

Wagner et al. 2013). The spatial posting of the product is

12.5 km. As the change detection model linking satellite

observations and soil moisture does not apply during

frozen conditions or snowmelt (Zwieback et al. 2015),

such observations are screened using the approach by

Naeimi et al. (2012).

The USCRN by the National Oceanic and Atmo-

spheric Administration/National Climatic Data Center

(NOAA/NCDC) consists of more than 100 climate

monitoring stations within the contiguousUnited States.

It is part of the International Soil Moisture Network

(ISMN; Dorigo et al. 2011). All sites are equipped with

dielectric soil moisture probes (Stevens Hydra Probe II

SDI-12) at several depths, of which we use the hourly

observations of VWCmade at 5cm depth (Bell et al. 2013;

NCDC 2015). The quality controls by Dorigo et al. (2013)

were applied to these data to filter out gross errors.

The ERA-Interim/ERA-Land dataset (ECMWF 2015)

is based on the European Centre for Medium-Range

Weather Forecasts (ECMWF) land surface model forced

by ERA-Interim atmospheric data, with precipitation

corrected toward observations (Balsamo et al. 2015). The

dataset has a spatial resolution of around 80km and a

temporal sampling interval of 3h (Albergel et al. 2013).

The soil is represented by four layers, of which we use the

topmost one (0–7cm depth). The volumetric soil moisture

content has been found to reflect that of in situ measure-

ments accurately, thus making it suitable for comparisons

with remotely sensed observations (Balsamo et al. 2015;

Dorigo et al. 2015; Albergel et al. 2013).

For the remote sensing and reanalysis datasets, the

grid cell closest to the location of each in situ probe is

considered. Owing to the irregular temporal sampling of

the remote sensing product, the datasets are collocated

by choosing the in situ and reanalysis product nearest in

time (within a window of 3 h; Dorigo et al. 2010). Sta-

tions with less than 100 collocated observations during

the study period (from 1 January 2011 to 31 December

2014) are discarded, yielding a total of 112 stations. All

methods of Table 1 were applied to these temporally

matched soil moisture time series [referred to as stan-

dard products (std)] and also to short-term temporal

anomalies (anom) calculated by subtracting the mean

within a time window of 35 days (Brocca et al. 2011).

Temporal anomalies are typically defined with respect

to a long-term climatology, but the reference with re-

spect to a moving average that is employed here is

commonly used when the data are of limited temporal

extent (Albergel et al. 2009; Dorigo et al. 2015). For both

standard products and temporal anomalies, we pre-

scribed linear mean maps for the ASCAT product and

quadratic mean maps for the remaining ones. When

assessing the sensitivity of the ASCAT error estimates

to the choice of estimation method, we focus on the

relative impact on the RMSE and SNR using the RD

and RSNR metric, respectively (see section 3d).

b. Results

The error magnitude (RMSE) estimates for the

ASCAT product based on the nonlinear quadratic EM

method typically differ by less than 10% from those

based on linear methods. The comparisons between all

the methods are summarized in terms of the RD and D

for the ASCAT product in Fig. 3 and Table S1 (in the

supplemental material), and in terms of the estimated

RMSE in Table S2 (in the supplemental material). On

average, the error estimates are larger when estimated

by EM-Q than when estimated by EM-L or TC (for both

the standard products and the temporal anomalies). The

larger errors of EM-Q correspond to lower SNRs (see

Fig. S2 in the supplemental material), but the corre-

sponding impact on the SNRs is typically less than 1.5 dB

RSNR. The difference between the nonlinear and linear

methods is found to be related to the estimated mean
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nonlinearity parameter (i.e., m; see Fig. 4a). Larger relative

differences (jRDj . 10%) only occur when the estimated

m exceeds 0.1. A similar relation is also observed when

comparing the RD with the estimated quadratic non-

linearity parameter of theERA-LandproductmERAor that

of the in situ measurements min_situ, rather than with their

mean value m (see Fig. S3 in the supplemental material).

In absolute terms, the difference D between the

RMSE estimates by EM-Q and the linear methods is

typically (50%) less than 0.4%DoS inmagnitude for the

ASCAT product (Fig. 5a and Table S1 in the supple-

mental material). Around 15% of the stations have D

(EM-Q, EM-L) exceeding 2% DoS in magnitude: in all

these cases, the ASCAT error estimates by EM-Q are

larger than those by its linear counterpart (i.e., EM-L).

However, they rarely correspond to large jRDj . 25%, as

the ASCAT RMSEs for these stations, which are mainly

located in the Great Plains and the Western Cordillera,

tend tobe comparatively large, that is, they typically exceed

15% DoS (Figs. 6a,d). For the ERA-Land product, the D

(EM-Q, EM-L) found at these stations has the opposite

sign, that is, the error estimates by EM-Q are smaller

than those by EM-L, with typicalD between 2%and 3%

VWC (Fig. 5b). Conversely, theD of the in situ product

does not show such a clear correspondence at these sites

(Fig. 6c).

The comparisons of the second nonlinear method

TLS-Q with the linear methods reveal similar values

with respect to D and RD. For both EM-Q and TLS-Q

the disagreements with CDF matching are prominent

(e.g., outliers with RD � 10%). These disagreements

are also larger when comparing the EM-Q and TLS-Q

with each other than when comparing either of them

with EM-L and TLS-L, respectively.

While the impact of the relaxed linearity assumption

on the estimated error magnitudes is predominantly

smaller than 10%, there are also stations with larger

relative discrepancies that indicate more pronounced

nonlinearities, such as those arising from the apparent

saturation of one product with respect to another. The

geographical distribution of these stations in Fig. 6 (and

Fig. S4 in the supplemental material for the SNRs) does

not show a clear correspondence to climate zones or

topography. A particularly large jRDj between EM-Q

and EM-L exceeding 20% is found for the Sebring sta-

tion (Florida). The mean maps estimated by EM-Q and

TLS-Q correspond to a diminished sensitivity or satu-

ration of the in situ measurements for low ASCAT soil

moisture values (Fig. 7). The opposite effect—an appar-

ent saturation for high ASCAT values—is inferred for

both the standard product and the temporal anomalies at

Spokane (Washington) in Figs. 7b and 7c, respectively.

The jRDj between the nonlinear and the linear EM

methods is about a factor of 3 larger for the former (11%)

than for the latter (3%). A comparable jRDj of 2% is also

found for the temporal anomalies of Chillicothe (Ohio;

Fig. 7d), and the disagreement between EM-Q and

TLS-Q is similarly limited (3%–5%). The error estimates

FIG. 3. Box plots of the RD (ASCAT) between different pairs of

methods, summarizing all the 112 USCRN soil moisture stations.

The method pairsm1,m2 are distinguished by their color according

to the legend. The results for the standard products and the tem-

poral anomalies are reported in the left and right half of the figure,

respectively. Each box plot summarizes the respective median by

a horizontal line, the interquartile range (IQR) by a colored box

(the whiskers span 2.5 times the IQR), and the remaining values by

plus signs. The vertical axis is linear from21 to 1 and logarithmic in

the absolute value for greater magnitudes.

FIG. 4. Relation between estimates of m (i.e., the mean of mERA and min_situ) and method

comparison error metrics observed in the case study. Observed relation between m and RD

between (a) EM-Q and EM-L and (b) EM-Q and TLS-Q. (c) The inconsistency of the es-

timates of m (in situ product) obtained using EM-Q and TLS-Q and the RD between these

two methods.
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obtained using these two nonlinear methods differ by

more than 20% jRDj in 5% of the sites, two of which are

shown in Figs. 7e and 7f: Lafayette (Louisiana) and

Chatham (Wisconsin). They correspond to situations

where there is only a weak relation between the in situ

and ASCAT soil moisture estimates, which may be re-

lated to the proximity of the Atchafalaya Swamp and the

Gulf of Mexico for the Lafayette station or of Lake Su-

perior (’15 km) for the Chatham station. Such large

RD between these two nonlinear methods are ob-

served to occur when the quadratic nonlinearity is

pronounced (m . 0.1, see Fig. 4b) and when the two

methods do not agree on the size of the quadratic

nonlinearity parameter (jDmj. 0:1, see Fig. 4c). When

FIG. 5. Maps of the conterminous United States showing the in situ stations and different

error metrics pertaining to all three products. The colors correspond to D(EM-Q, EM-L) for

the (a) ASCAT and (b) ERA-Land product. The associated color bar is shown at top, and it

also pertains to (c)D(EM-Q, EM-L) for the in situmeasurements. (d) The estimate of the EM-L

ASCAT RMSE (% DoS), along with its color bar.

FIG. 6. Maps of the conterminous United States showing the in situ stations and different

error metrics pertaining to the ASCAT product. The colors correspond to the relative differ-

ences (a) RD(EM-Q, EM-L) and (b) RD(EM-Q, TLS-Q), respectively. The associated color

bar is shown at top, and it also pertains to (c) RD(EM-Q, CDF). (d) The estimate of the

ASCAT RMSE (% DoS), along with its color bar.
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comparing EM-Q to CDF instead, larger differences

of jRDj. 50% occur in southwestern Arizona, in

Nevada, and across Nevada’s border in California (see

Fig. 6). These correspond to sites where the estimated

ASCAT RMSE (i.e.,
ffiffiffiffiffi
ŝ2

p
) is particularly small (,4%

DoS, Fig. 7).

The discrepancies between the error estimates of the

nonlinear and linear EMmethods are more pronounced

for the standard products than for the temporal anom-

alies. For the Spokane station in Figs. 7b and 7c, for

instance, the jRDj is 7% points (pp) smaller for the

anomalies (11% vs 3%). When comparing all stations,

we find more generally that large values greater than

15% are more common for the standard products (10%)

than for the anomalies (4%; see also Table S1 in the

supplemental material). Values of jRDj (std) this large
are typically reduced to less than 15%when the errors of

the temporal anomalies are estimated instead (Fig. 8).

By contrast, smaller values of jRDj (std) do not exhibit

such a tendency, and stations with jRDj (std) , jRDj
(anom) also occur (30% in total). A similar relation is

observed when the impact of the nonlinearities is

determined by comparison of TLS-L and TLS-Q.

The main difference is the increased frequency of large

jRDj (anom) . 15%.

6. Discussion

a. Influence of quadratic nonlinearities on the error
estimates

The impact of introducing nonlinear relations in the

form of quadratic mean maps on the estimated ASCAT

error magnitudes seems to be limited, as the RD between

EM-Q and EM-L rarely exceeds 15%. Such large values

are restricted to cases when the quadratic nonlinearity is

pronounced (m . 0.1, Fig. 4a). However, such a pro-

nounced quadratic nonlinearity does not necessarily lead

to large RD (see Fig. 4a). In other words, a large de-

viation from linearity as expressed by the quadratic

measure (i.e., m) seems to be a necessary but not a suffi-

cient condition for EM-L to diverge appreciably from

EM-Q. Also, the simulation study indicates that non-

linearities are not sufficient for EM-L to cease to provide

reliable error estimates, as this estimator and also the

other linear methods perform well for product Y despite

its quadratic mean map with m 5 0.4 in scenario Q4. In

this simulation scenario, the underestimation of the

RMSE by EM-L (compared to both the true value and

the estimate by EM-Q) for productX is accompanied by

an overestimation for product Z. A similar seemingly

compensatory deviation between EM-Q and EM-L for

FIG. 7. Scatterplots of observed ASCAT (standard product or anomaly) and in situ soil moisture for six different

stations. Each panel also shows the relation between the expected value of these two products for a given anomalyT

as inferred byEM-Q (orange), TLS-Q (blue), andTC (green). TheRD(EM-Q, EM-L) andRD(EM-Q, TLS-Q) are

annotated in the upper-left and upper-right corner of each panel, respectively, whereas the name and geographic

coordinates are given underneath.
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two products occurs in the case study, where about 15%

of the stations have large negative D(EM-Q, EM-L) .
2% DoS for the ASCAT product and large positive

D(EM-Q, EM-L). 1%VWCfor theERA-Landproduct.

Taken together, these findings indicate that the error in-

duced by neglecting nonlinear quadratic relations can be

of either sign for any given product.However, owing to its

focus on the magnitude of the deviations, this study has

not addressed ways of statistically assessing whether a

nonlinear model provides a better fit. Possible ways of

testing the evidence for nonlinear relations may include

bootstrapping or the analysis of the likelihood within the

factor analysis model, which, however, can be sensitive to

the assumptions on which they are based, for example,

regarding autocorrelation or normality (MacKay 2003;

Yalcin and Amemiya 2001).

In the case study, the linear methods are more similar

to each other than to the quadratic ones. The discrep-

ancies of the nonlinear EM-Q with the standard TC

method and also with TLS-L are comparable to those

with EM-L. As the EM-L method relies on the nor-

mality assumption, its close agreement with standard TC

may indicate that this assumption is not a limiting factor

in the case study. A comparatively small impact of vio-

lations of this assumption was also observed in the

simulation study of Fig. 2 for EM-L and EM-Q.

In contrast to the EM methods, the TLS-based algo-

rithms make no assumption of normality. The quadratic

version (TLS-Q), however, does require that the de-

viations from linearity be small. The simulation study

confirmed this limitation by showing that the deviations

(especially the spread) increase with the degree of

quadratic nonlinearity. In the case study, such direct

comparisons are impossible as the truth is not known.

However, the disagreement between TLS-Q and EM-Q

was found to increase with the estimated quadratic

nonlinearity parameter (i.e., m; Fig. 4). The observed

dependence on m suggests that the assumption of small

nonlinearities can be a limiting factor in practice. The

scatterplots of Figs. 7c–e show cases where the quadratic

nonlinearity parameter estimated by TLS-Q exceeds

that obtained with EM-Q. In both cases the TLS-Q es-

timates of mmay be interpreted as too large by a human

observer, that is, the fitted relations seem questionable.

However, in Fig. 7f the relation obtained with TLS-Q

appears more natural than those estimated by EM-L or

EM-Q. The latter two cases correspond to low SNRs,

suggesting that the estimation of the mean maps is less

stable when the soil moisture products are not closely

related. As the simulation study has also indicated,

such a lack of covariability limits the applicability and

accuracy of TLS (Boggs et al. 1988) and also of standard

TC (Su et al. 2014). While the simulations do not reveal

associated limitations of the methods based on factor

analysis, the limited scope of the synthetic case study

does not preclude such limitations. Conversely, it does

indicate a lack of robustness of TLS-Q to the specifica-

tion of which product is assumed to have a linear mean

map. This is in contrast to the EM-Q model based on

factor analysis, which also requires that one of the

products have a linear mean map: however, the simu-

lations in Fig. 2 indicate that it is less affected by such a

model misspecification. The simulation does not address

model misspecifications with respect to the functional

form of the mean maps, whereas, for example, Fig. 7a

indicates that more flexible functions such as cubic

FIG. 8. Comparison of standard products and temporal anomalies with respect to jRDj ob-
served in the case study. The relation between the RD(m1,m2) of the standard product and the

temporal anomalies is shown, withm1 being a quadratic method andm2 its linear counterpart:

(a) m1 5 EM-Q and m2 5 EM-L and (b) m1 5 TLS-Q and m2 5 TLS-L.
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polynomials may be more appropriate in practice. The

appropriate model specification is hence an important

issue that deserves further investigation.

An alternative way to match the products is the non-

parametric technique CDFmatching. As opposed to the

other methods, it only compares the marginal distribu-

tions of the soil moisture products, that is, it does not

explicitly account for errors. As shown in Fig. S1 (in the

supplemental material; results based on normal distri-

butions and linear mean maps) it can also be applied

when the SNR is very small (1021), provided that the

SNR of the different products are equal (Yilmaz and

Crow 2013). This requirement is likely problematic in

practice, as the SNRs vary between the products, thus

inducing biases even in the linear case. The simulations

of section 4 suggest furthermore that deviations from

normality (e.g., heavy tails) can exacerbate the biases

induced by CDF matching. These biases are found to be

mainly due to the wide and asymmetric distribution of

the estimates, which additional simulations indicate is

not due to the length of the time series. The origin and

nature of this phenomenon thus deserve closer scrutiny,

which may also affect potential mitigation strategies, for

example, the use of nonparametric approximation ap-

proaches to matching the two CDFs. Despite these

drawbacks, CDF matching has the advantage that it

does not require a specific parametric form, as opposed

to EM-Q and TLS-Q.

All the estimation methods may furthermore be af-

fected when the error magnitude is related to the soil

moisture content. Several examples in Fig. 7 (namely,

Figs. 7a,d) indicate that this can indeed be the case. For

instance, in Sebring in Fig. 7a, the disagreement between

ASCAT and the in situ data increases as the soil be-

comes wetter. This trend appears to be related to the

inferred mean maps, which indicate a saturation of the

sensitivity. For this particular example, the RMSE var-

ies by at least a factor of 3 between dry and wet condi-

tions. Yilmaz and Crow (2014) and Mittelbach et al.

(2011) also observed a connection between the random

errors and the underlying soil moisture. As the average

soil moisture often varies seasonally, the dependence

of the error magnitude on the soil water content may

also contribute to seasonal variations of the RMSE, as

previously observed by, for example, Loew and Schlenz

(2011) and Zwieback et al. (2012b). Uncertainty as-

sessments that account for seasonal variations may

therefore mitigate the impact of such a dependence

even if they do not account for it explicitly. As these

dependences can be large (e.g., a factor of 3 increase in

the RMSE), they may also be relevant in data assimi-

lation or product merging. If these applications are to

account for variable error magnitudes, appropriate

error characterization methods such as the multiplica-

tive approach by Alemohammad et al. (2015) will be

required.

b. Standard products and temporal anomalies

One of our central objectives was the comparison

of the impact of nonlinearities on the error estimates

of the anomalies compared to those of the standard

products. We find that jRD(EM-Q, EM-L)j are on

average smaller for the anomalies. In particular, large

jRDj . 15% occur almost exclusively for the standard

product (Fig. 8). The Spokane station is one such ex-

ample, as the jRDj of its standard product is 3 times as

large as that of its anomaly. The scatterplots in Fig. 7

suggest that this difference is indeed related to the re-

duced nonlinearity of the anomaly datasets. The non-

linear relations between the standard products thus

seem to be dominated by different representations of

the climatology component (cf. Su and Ryu 2015).

However, there appear to be other factors besides the

different climatologies that affect the observed impact

of nonlinearities. In particular, Fig. 8 shows that there

are also cases where the impact of the nonlinearities is

larger in the anomaly product.

c. Practical relevance

Overall, the results of the case study suggest that the

impact of quadratic nonlinear relations on the error

characterization of soil moisture products may be lim-

ited in practice. The relative differences between linear

and nonlinear quadratic methods of typically ,10%

may be smaller than other sources of uncertainty. One

such source is the limited sample size. Previous studies

have limited the error estimation to time series ex-

ceeding 100 samples (see section 5). The relative un-

certainty of the RMSE for this length was estimated by

Zwieback et al. (2012c) to be around 20%; this value

depends on the statistical distribution of the noise terms.

Additional sources of uncertainty (e.g., spatial mismatch

and temporal variability) have also been identified as

critical (Gruber et al. 2013, 2016; Su et al. 2015).

Whether they are more important than nonlinear re-

lations will depend on the application and dataset. In

our study we find that nonlinearities seem to be

relevant for about 15% of the stations [as measured by

jRD(EM-Q, EM-L)j .10%], for example, the Sebring

station in Fig. 7a. In such cases, the degree of quadratic

nonlinearity may be an indication that the soil moisture

products do not represent the same ‘‘signal.’’ Alterna-

tively, if the connection between the datasets is deemed

meaningful, the explicit consideration of nonlinear re-

lationsmay be beneficial in practice, for example, in data

assimilation (DA) studies. The nonlinear mean maps
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correspond to nonlinear observation operators, which

cannot be handled directly by certain techniques such as

the Kalman filter or optimal interpolation (Montzka

et al. 2012). They could, however, be incorporated into

nonlinear methods, for example, the particle filter or the

ensemble Kalman filter. An alternative to estimating

these relations before the actual DA is the inclusion of a

bias model within the DA method (Lievens et al. 2015).

The bias models could be chosen to consist of quadratic

polynomials or other parametric functions capable of

reproducing the observed nonlinear relations (De

Lannoy et al. 2007b).

Accounting for nonlinear relations may also improve

the merging and downscaling of soil moisture products.

Two methods that can do so are CDF matching and

copulas (Liu et al. 2012; Leroux et al. 2014). These are

both built on a probabilistic framework but they do not

explicitly consider the uncertainties of these products.

However, probability theory can also be applied to in-

corporate these uncertainties, as, for instance, in factor

analysis model of section 3b. Within its probabilistic

model of (4), the merging of two soil moisture products

X and Y may consist of a conditioning operation. The

conditional distribution of T, P(T jX5 x, Y5 y), rep-

resents the knowledge and uncertainty given the ob-

servations X5 x and Y5 y. For linear mean maps,

Yilmaz et al. (2012) analyzed such a probabilistic

merging and provided analytic formulas. For nonlinear

mean maps, such closed-form solutions do not exist.

However, the variational EM algorithm of section 3b

incorporates an approximate solution. The description

of the procedure in section S2 (in the supplemental

material) also includes references to alternative

methods, for example, Markov chain Monte Carlo

sampling. Future research may identify the most suit-

able of these methods for merging, for example, in

terms of speed and accuracy. More generally, the im-

pact of nonlinear relations on product merging and

blending remains an open question.

7. Conclusions

Nonlinear relations between the three soil moisture

products whose error variances are to be estimated

cannot be handled by standard triple collocation (TC)

analyses. Our simulations show that quadratic relations

between soil moisture products can induce biases of

either sign and that they can also be associated with

negative, nonphysical error variance estimates. Triple

collocation estimation can also be applied after pre-

processing by CDF matching, which can account for

arbitrary nonlinear relations: however, it does not

explicitly consider random errors. Our theoretical

analyses and simulations indicate that the accuracy

and robustness of CDF matching (bias and spread of

the estimates) are sensitive to the noise level, the

probability distributions (e.g., normal, skewed, or heavy

tailed), and the degree of quadratic nonlinearity of the

products.

We introduce two estimation methods than can ac-

count for quadratic nonlinearities: they are both para-

metric methods that assume one of the relations to be

linear but allow the others to be quadratic. First, total

least squares (TLS) as part of triple collocation is ex-

tended to quadratic relations; however, it can only deal

with small nonlinearities. In the simulation study, this

technique becomes increasingly prone to outliers as the

degree of quadratic nonlinearity increases. The presence

and prevalence of these outliers, which are also related

to the noise level, induce a bias, as they correspond to

an overestimation of the error variance. Second, we

develop a probabilistic method based on the variational

expectation–maximization (EM) algorithm, which can

handle both quadratic and linear relations. It assumes

both the errors and the underlying soil moisture to be

normally distributed. Empirically, however, this method

is found to be the most robust error estimation approach

in the simulation study, that is, it is least affected by

nonlinearities of varying degrees and also nonnormal

distributions (e.g., skewed or heavy tailed).

Comparisons of the quadratic EM method with its

linear counterpart and the standard TC approach in a

test study (coarse-scale remotely sensed and reanalysis

soil moisture, in situ measurements) reveal typical rel-

ative differences in the error estimates of less than 10%.

The discrepancies with CDF matching and both the

linear and nonlinear TLS methods are of similar mag-

nitude. However, we also observe a number of cases

where quadratic nonlinear relations had a larger impact

on the error estimates, with the relative difference ex-

ceeding 15%. Such cases occur almost exclusively for the

standard products rather than the temporal anomalies,

indicating that error estimates of the latter are typically

less affected by quadratic nonlinearities. The observed

quadratic relations correspond to the saturation of the

sensitivity of one of the products with respect to others.

They have been attributed in previous studies to, for

example, different spatial scales, the parameterization

of the hydrologic or remote sensing retrieval methods,

or physical limitations of the sensors. Such nonlinear

relations are usually not considered explicitly in appli-

cations of the soil moisture datasets, including data as-

similation and product merging. In certain cases, these

may profit from the error characterization provided by

the suggested methods or new developments that can

account for error autocorrelation or different functional
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forms of the nonlinear relations (e.g., cubic or higher-

order polynomials). The explicit consideration of non-

linear relations thus has the potential to not only

provide a more comprehensive uncertainty character-

ization of soil moisture products but also to improve the

use of these products in applications as diverse as

weather and flood forecasting.
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